On the Numerical Radius of a Quaternionic Normal Operator
نویسنده
چکیده
We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternionic compact normal operators. Finally, we show that every quaternionic compact operator is norm attaining and prove the Lindenstrauss theorem on norm attaining operators, namely, the set of all norm attaining quaternionic operators is norm dense in the space of all bounded quaternionic operators defined between two quaternionic Hilbert spaces.
منابع مشابه
Further inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملPfaffian and decomposable numerical range of a complex skew symmetric matrix
In this talk, we discuss the maximum number of n × n pure imaginary quaternionic solutions to the Hurwitz matrix equations given by TiT ∗ j + TjT ∗ i = 2δijI, i, j = 1, . . . , p, where δij is the Kronecker delta. The numerical radius of weighted shift operators Speaker Mao-Ting Chien (Soochow University), [email protected] Co-author Hiroshi Nakazato (Hirosaki University). Abstract Let T be a ...
متن کاملSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملSliding Friction Contact Stiffness Model of Involute Arc Cylindrical Gear Based on Fractal Theory
Gear’s normal contact stiffness played an important role in the mechanical equipment. In this paper, the M-B fractal model is modified and the contact surface coefficient is put forward to set up the fractal model, considering the influence of friction, which could be used to calculate accurately the involute arc cylindrical gears’ normal contact stiffness based on the fractal theory and Hertz ...
متن کامل